Menu
fuels

Measuring the Success of British Columbia’s Renewable and Low Carbon Fuel Regulation

Print Friendly
British Columbia’s (B.C.) Greenhouse Gas Reduction (GHGR) Targets Act (GHGRTA) contains ambitious goals of reducing province-wide greenhouse gas (GHG) emissions by 33% in 2020 and 80% in 2050 (relative to 2007). With ~38% of B.C.’s GHG emissions stemming from transportation (in 2012), it is clear that B.C.’s GHG emissions reduction goals can only be realized with an effective transport fuel policy. Enacted in December 2009, the GHGR Renewable and Low Carbon Fuel Requirement (RLCFR) Act and Regulation have achieved significant GHG emissions reductions accredited to its enforcement with 904,900 t CO2eq emissions reduction in 2012. At face-value, this is a great success. However, there are several accounting issues that suggest these GHG emissions reductions are inaccurate.
In a recent study published in Biofuels, we show that the RLCFR legislation has not been nearly as effective as proclaimed by the B.C. government. Nevertheless, this transport fuel regulation is essential if B.C. wants to achieve its future GHG emissions reduction targets.
If you’d like more details, please feel free to contact us. Otherwise, here’s a brief overview of the paper…

An Intro to BC’s fuel regulation

With overwhelming consensus (Cook et al., 2013), it’s become clear that human-induced climate change is a serious issue and this has led to a number of local jurisdictions stepping up their climate action plan with bold targets written into legislation, where B.C. is poised to be at the forefront. Taking inspiration from California’s Greenhouse Solutions Act (approved September 2005) the Liberal government of B.C. first expressed their ambitious GHG emissions reduction targets during the reading of the provincial Throne Speech in February 2007 with now legislated targets of reducing GHG emissions by 33% in 2020 and by 80% in 2050—relative to GHG emissions in 2007 (64.3 Mega tonnes (Mt) CO2eq) (Sodero, 2011). One act/regulation that has gained particular notice is the GHG emissions reduction Renewable Low Carbon Fuel Requirements (RLCFR) Act/Regulation of B.C. (B.C. Government, 2014), because it has been noted and given media attention as being B.C.’s most effective climate legislation to date in terms of reducing GHG emissions (Thomson, 2015; Wolinetz & Axsen, 2014).
Enacted in December of 2009, the RLCFR Regulation requires two main conditions of large-scale (greater than 75 million m3 per year) transportation fuel suppliers of B.C. Firstly, these fuel suppliers are required to blend their fossil gasoline and diesel fuels with at least 5% and 4% of renewable fuels, respectively (B.C. Government, 2014). Secondly, these fuel suppliers must ensure that the life cycle carbon intensity (CI) of their fuels is below the CI limit prescribed during a given year, where this CI limit is set to be reduced by 10% from 2011 to 2020 (B.C. Government, 2014).
According to B.C. government accounts the RLCFR has been a success thus far, where in its first three years, GHG emission reductions attributed to the RLCFR have increased: 558.7 Kilo (K) tonnes (t) CO2eq in 2010 to 904.9 Kt CO2eq in 2012 (B.C. Government, 2012). In fact, a recent report has stated that the RLCFR is currently B.C.’s most important piece of climate legislation where it has contributed to 25% of B.C.’s GHG emissions reductions in 2012, relative to the 2007 baseline year (Wolinetz & Axsen, 2014). With this early success, it is important to ask how this reduction in GHG emissions is being calculated and whether there are any important life cycle accounting measures being left out of the equations.

What the study did

The study looked into the details of the RLCFR of B.C. to firstly understand how past GHG emissions reductions that are being reported and accredited to the RLCFR are being calculated. Secondly, this study highlighted two key CI accounting items that the RLCFR neglects to consider: incorporating indirect land use change (iLUC) and developing fossil fuel CIs that are representative of the fossil fuel mix of a given compliance period.

Now let’s take a closer look at iLUC.

Why iLUC is important

The inclusion of iLUC is important because GHG emissions due to iLUC can lead to a significant increase in CI (Broch, Hoekman, & Unnasch, 2013). For instance, Ahlgren & Di Lucia (2014) undertook a review of iLUC modelling results and found iLUC factors for corn and wheat ethanol to range from 7 to 104 g CO2eq/MJ and -80 to 155 g CO2eq/MJ, respectively. For canola, soy and palm-based biodiesel, iLUC factors ranged from 2 to 220 g CO2eq/MJ, 2 to 270 g CO2eq/MJ and 3 to 114 g CO2eq/MJ, respectively (Ahlgren & Di Lucia, 2014). These iLUC factors are substantial given that the most recently approved CIs (iLUC not included) reported by the B.C. Government for ethanol, biodiesel and hydrogenated derived renewable diesel (HDRD) ranged from -4.23 to 70.36 g CO2eq/MJ, -0.05 to 38.32 g CO2eq/MJ, and 18.16 to 63.66 g CO2eq/MJ, respectively. The inclusion of iLUC factors for B.C.’s dedicated crop‐based ethanol and biodiesel fuel sources would dramatically change the perceived benefits of a renewable fuel that is derived from cropland.

What we found in the accounts as reported

In terms of total GHG savings, the reported GHG savings are 12% higher than those calculated in this study using the regulation’s equation. As illustrated in figure 1, the main disparity stems from GHG savings due to the use of biodiesel and HDRD fuels. In all cases, except for propane, the reported savings tend to be higher than the values we calculated using the regulation’s specified equation.
Figure 1: Greenhouse gas savings (kilotonnes [Kt] CO2eq) in the year 2012 attributed to the RLCFR Regulation for each alternative fuel type. Values are presented as those reported in the government accounts and as a result of own calculations. Percentage values represent the C/¡ % difference of calculated results relative to reported values. HDRD = hydrogenated derived renewable diesel; CNG = compressed natural gas; LNG = liquefied natural gas.

Figure 1: Greenhouse gas savings (kilotonnes [Kt] CO2eq) in the year 2012 attributed to the RLCFR Regulation for each alternative
fuel type. Values are presented as those reported in the government accounts and as a result of own calculations. Percentage
values represent the C/¡ % difference of calculated results relative to reported values. HDRD = hydrogenated derived renewable
diesel; CNG = compressed natural gas; LNG = liquefied natural gas.

How reductions change when iLUC is included

GHG savings are greatly reduced when the average iLUC factors are included. In some cases, from this GHG perspective it would have made more sense to use conventional petroleum-based gasoline and diesel in place of these GHG intense crop derived ethanol and HDRD supplies consumed in B.C. These significant fuel-specific reductions in GHG savings, in turn, equate to significant reductions in total 2012 GHG saving, as is depicted in figure 2.
Figure 2: Total greenhouse gas emissions savings in the year 2012 that are attributed to the RLCFR Regulation when iLUC factors are included. Total values are calculated using own calculations. Calculated and reported savings with no iLUC factors are also included (horizontal broken lines) for comparison. SD = standard deviation of iLUC factors. ‘#’ yr AP = amortization period (years) to divide iLUC related GHG emissions across; K = kilo ('000). Negative values indicate no savings or a net burden.

Figure 2: Total greenhouse gas emissions savings in the year 2012 that are attributed to the RLCFR Regulation when iLUC
factors are included. Total values are calculated using own calculations. Calculated and reported savings with no iLUC factors are
also included (horizontal broken lines) for comparison. SD = standard deviation of iLUC factors. ‘#’ yr AP = amortization period (years) to divide iLUC related GHG emissions across; K = kilo (‘000). Negative values indicate no savings or a net burden.

Figure 2 displays the range of total 2012 RLCFR-related GHG savings when iLUC is factored into the calculations and it clearly shows the importance of including iLUC where even the application of median iLUC factors can lead to greater than 50% reductions (see triangle markers in figure 2) in total GHG savings. As the amortization period increases, the range of GHG savings converges because the iLUC factors decrease. When a 30 year amortization period and the median iLUC factors are applied, total 2012 GHG savings are reduced from the reported 904.9 Kt CO2eq, to 505.4 Kt CO2eq—a significant 44% decrease.

Some important points of discussion

Another important caveat that is lost in the RLCFR reported total savings lies with electric mobility. The majority of GHG savings attributed to electric mobility stems from B.C.’s lower mainland (greater Vancouver area) sky-train and trolleybus system in which most of this transport network existed well before the RLCFR regulation was enforced in 2010. In other words, the RLCFR cannot claim any sort of additionality or credit for implementing the vast majority and if not all of this low-carbon mode of electric public transportation.
Another concern is that there is no public RLCFR documentation that provides an explanation as to why iLUC is not accounted for. Uncertainty should not be an argument for systematically excluding iLUC from the life cycle CI of a biofuel (Muñoz et al., 2015). Even with the level of uncertainty in iLUC factors to date, including iLUC gives us an indication of an extremely relevant hotspot that should not be overlooked. The inclusion of iLUC makes the CIs of biofuels more accurate, not less. In other words, it is better to be ‘approximately right than precisely wrong’.
In the immediate short term the RLCFR regulators need to provide a better publicly accessible explanation of why they are not including iLUC. This explanation should be accompanied with an implementation plan that clearly states milestones and methods for generating iLUC factors to be incorporated into the RLCFR Regulation.
There are numerous reasons to remain optimistic that technological innovation will enable the goals of the RLCFR Regulation to be realized. It is becoming increasingly clear that carbon capture and storage systems will need to be integrated with oil sands related processing units, upgraders and refineries. For instance, results from Cai et al. (2015) indicate that around 16.3 to 39.7 g CO2eq/MJ diesel occurs during the oil sands recovery (9 to 30.1 g CO2eq/MJ diesel) and refining (7.3 to 9.6 g CO2eq/MJ diesel) processes. If CCS units can create even a 50% net reduction in these life cycle emission sources, then B.C.’s increasingly stringent CI limits will be easier to reach.
B.C. needs to continue research, development and provide economic incentives until regional waste wood and agricultural residue-based diesel/ethanol (i.e. 2nd generation biofuels) can be generated at a commercial scale. Generating fuels from such sources have proven to exhibit substantially lower life cycle GHG emissions (in the range of ‐5 to 30 g CO2eq/MJ) than their petroleum counterparts and iLUC is not a significant issue (Chum et al., 2011).
One of B.C.’s big transport related GHG solutions resides in electric mobility. Given B.C.’s vast quantity of hydro power resources and a correspondingly low electricity grid CI, the Government of B.C. has a great opportunity for incentivizing the increased adoption of personal electric vehicles (PEVs). The commercial availability of PEVs is global, and with an already developed and expanding network of charging stations, B.C. is ripe for increasing PEV share in the personal motor vehicle fleet. Smart meters could also be used to account for domestic EV charging and thus increase measured GHG emissions reductions from personal EV transport in B.C. However, caution and analysis is required to ensure PEVs do not end up as just a secondary family vehicle (due to the currently low mileage per charge) and PEVs do not significantly displace more GHG friendly modes of transportation, like bus (trolley), sky train, bicycling and walking.

For a full list of references and more details please contact us…


logo_small

About

Ecogamut Consulting – helping you achieve your sustainability goals

At Ecogamut, making sustainability metrics work for you is the bread and butter of our operation. Our toolbox of expertise includes life cycle assessment, environmental product declaration, carbon footprinting, carbon offsetting, and climate change adaptation strategies. With a team of Ph.D.-level experts you can be rest assured that Ecogamut will deliver a high quality and high impact product that will effectively direct your organization or jurisdiction towards its most cherished sustainability goals.
———————————
Have a sustainability project on your mind and think we can help? Contact info@ecogamut.ca


Leave a reply

Your email address will not be published.

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>